martes, 12 de noviembre de 2013

Procesos Fabriles

Índice





Introducción


Se llama proceso fabril a la serie de cambios y transformaciones a que se somete a las características de la materia prima (Dichas características pueden ser de naturaleza muy variada tales como la forma, la densidad, la resistencia, el tamaño o la estética.) desde su llegada a la planta de producción hasta convertirse en producto acabado o elaborado.
Todas las plantas o industrias que producen algo a partir de una materia prima sometida a cambios, desarrollan un proceso fabril (de fabrica).
Por ejemplo, una fábrica de automóviles desarrolla un proceso continuo hasta tener un auto acabado. Por ser este una serie de cambios en la materia prima hasta lograr un auto como producto final producido en una fábrica.

El proceso fabril:
  • Se somete a la materia prima a cambios y transformaciones por medio de químicos y materiales industriales.
  • Es hecho en fábricas.
  • Se utilizan químicos que afectan el ecosistema.
  • Por lo general es fabricado en poco tiempo y en grandes cantidades.

Volver al Índice

Calderería


Es una especialidad profesional de la fabricación mecánica que tiene como función principal la construcción de depósitos aptos para el almacenaje y transporte de sólidos en forma de granos o áridos, líquidos y gas; así como todo tipo de construcción naval y estructuras metálicas. Muchos de estos depósitos reciben el nombre de silos y cisternas. El material más común que se trabaja en calderería es el acero laminado y vigas en diferentes aleaciones, formas y espesores.

En un taller o una industria de calderería es común encontrar la siguiente maquinaria:
  • Cizallas para cortar la chapa;
  • Prensas de estampar y troquelar chapa;
  • Máquinas de rodillos para doblar y conformar la chapa;
  • Remachadoras (en desuso, reemplazadas por la soldadura);
  • Máquinas de soldar. De corriente continua y alterna, manuales y automáticas;
  • Sopletes de corte (acetileno ó propano y oxigeno).
Cuando se trata de construcción de depósitos que van a trabajar a altas presiones la calidad del metal que lo compone y las soldaduras que lleve durante su construcción se someten a diversas pruebas, las más habituales; soldaduras y materiales revisados mediante ultrasonidos y rayos X.



Ejemplos significativos de construcción en calderería:
  • la Torre Eiffel


  • El puente colgante de Vizcaya


  • La estructura que sustenta el Museo Guggenheim Bilbao


  • Petroleros


  • Depósitos de gas

  • etc.

Volver al Índice

Conformado


Trabajo en frío
Hace referencia a todos aquellos procesos de conformado realizado a baja temperatura generalmente ambiente, como son embutido, doblado, rolado, estirado, etc. Además posee un acabado brillante y bastante exacto.Tiene la particularidad de mejorar la resistencia, la maquinabilidad.
El endurecimiento por deformación plástica en frío es el fenómeno por medio del cual un metal dúctil se vuelve más duro y resistente a medida es deformado plástica mente. Se puede apreciar mejor por medio del siguiente cuadro que muestra el proceso que pasa el metal.



Trabajo en caliente
Una de las propiedades más importantes de los metales es su maleabilidad, este termino, indica la propiedad de un metal para ser deformado mecánicamente por encima de su límite elástico, sin deformarse y sin incremento considerable en la resistencia a la deformación. Dado que el metal se encuentra a alta temperatura, los cristales reformados comienzan a crecer nuevamente, pero estos no son tan grandes e irregulares como antes. Al avanzar el trabajo en caliente y enfriarse el metal, cada deformación genera cristales mas pequeños, uniformes y hasta cierto grado aplanados, lo cual da al metal una condición a la que se llama anisotropía u orientación de grano o fibra, es decir, el metal es mas dúctil y deformable en la dirección de un eje que en la del otro.

La ventaja principal del trabajo en caliente consiste en la obtención de una deformación plástica casi ilimitada, que además es adecuada para moldear partes grandes porque el metal tiene una baja resistencia de cedencia y una alta ductilidad. Aquí se pueden trabajar diferentes conformados como es; el laminado, forjado, extursion, embutido entre otros.



Volver al Índice

Estampación


La estampación es un tipo de proceso de fabricación por el cual se somete un metal a una carga de compresión entre dos moldes. La carga puede ser una presión aplicada progresivamente o una percusión, para lo cual se utilizan prensas y martinetes. Los moldes, son estampas o matrices de acero, una de ellas deslizante a través de una guía (martillo o estampa superior) y la otra fija (yunque o estampa inferior).
Si la temperatura del material a deformar es Mayor a la temperatura de recristalización, se denomina Estampación en Caliente, y si es menor se denomina estampación en frío.



Trabajo en caliente
Este tipo de Estampación se realiza con el material a mayor temperatura que la temperatura de recristalización.
El producto obtenido tiene Menor precisión dimensional y Mayor rugosidad que cuando se trabaja en frío, pero es posible obtener mayores deformaciones en caliente.

Trabajo en frío
La estampación en frío se realiza con el material a menor temperatura que la temperatura de recristalización, por lo que se deforma el grano durante el proceso, obteniendo anisotropía en la estructura microscópica. Suele aplicarse a piezas de menor espesor que cuando se trabaja en caliente, usualmente chapas o láminas de espesor uniforme.
Las principales operaciones de estampación en frío son:
  • Troquelación: punzonado (realización de agujeros), corte (separación de piezas de una chapa) o acuñación.
  • Embutición: obtención de cuerpos huecos a partir de chapa plana.
  • Deformación por flexión entre matrices: curvado, plegado o arrollado.
Los materiales utilizados en la estampación en frío son dúctiles y maleables, como el acero de baja aleación, las aleaciones de aluminio (preferentemente al magnesio, sin cobre), el latón, la plata y el oro.
Volver al Índice

Extrusión


La extrusión es un procedimiento para conformar metales y aleaciones, haciendo que salgan esos metales a través de una matriz mediante una presión aplicada al metal.
Se realiza a altas velocidades. El punzón golpea a la parte de trabajo más que aplicar presión.
Grandes reducciones y altas velocidades de producción, de aquí su alta importancia comercial.
De aquí se fabrican tuberías, perfiles, envases. Pudiéndose decir de él que le da a las piezas un acabado excelente.





Volver al Índice

Forjado


La forja, es un proceso de conformado por deformación plástica que puede realizarse en caliente o en frío y en el que la deformación del material se produce por la aplicación de fuerzas de compresión.
Este proceso de fabricación se utiliza para dar una forma y unas propiedades determinadas a los metales y aleaciones a los que se aplica mediante grandes presiones. La deformación se puede realizar de dos formas diferentes: por presión, de forma continua utilizando prensas, o por impacto, de modo intermitente utilizando martillos pilones.
Hay que destacar que es un proceso de conformado de metales en el que no se produce arranque de viruta, con lo que se produce un importante ahorro de material respecto a otros procesos.





Volver al Índice

Fundición



Es el proceso de fabricación de piezas, comúnmente metálicas pero también de plástico, consistente en fundir un material e introducirlo en una cavidad, llamada molde, donde se solidifica.
El proceso más común es la fundición en arena, por ser ésta un material refractario muy abundante en la naturaleza y que, mezclada con arcilla, adquiere cohesión y moldeabilidad sin perder la permeabilidad que posibilita evacuar los gases del molde al tiempo que se vierte el metal fundido.
La fundición en arena consiste en colar un metal fundido, típicamente aleaciones de hierro, acero, bronce, latón y otros, en un molde de arena, dejarlo solidificar y posteriormente romper el molde para extraer la pieza fundida.
Para la fundición con metales como el hierro o el plomo, que son significativamente más pesados que el molde de arena, la caja de moldeo es a menudo cubierta con una chapa gruesa para prevenir un problema conocido como "flotación del molde", que ocurre cuando la presión del metal empuja la arena por encima de la cavidad del molde, causando que el proceso no se lleve a cabo de forma satisfactoria.





Volver al Índice

Inyección


Es un proceso semicontinuo que consiste en inyectar un polímero, cerámico o un metal1 en estado fundido (o ahulado) en un molde cerrado a presión y frío, a través de un orificio pequeño llamado compuerta. En ese molde el material se solidifica, comenzando a cristalizar en polímeros semicristalinos. La pieza o parte final se obtiene al abrir el molde y sacar de la cavidad la pieza moldeada.
El moldeo por inyección es una técnica muy popular para la fabricación de artículos muy diferentes. Sólo en los Estados Unidos, la industria del plástico ha crecido a una tasa de 12% anual durante los últimos 25 años, y el principal proceso de transformación de plástico es el moldeo por inyección, seguido del de extrusión. Un ejemplo de productos fabricados por esta técnica son los famosos bloques interconectables LEGO y juguetes Playmobil, así como una gran cantidad de componentes de automóviles, componentes para aviones y naves espaciales.
Los polímeros han logrado sustituir otros materiales como son madera, metales, fibras naturales, cerámicas y hasta piedras preciosas; el moldeo por inyección es un proceso ambientalmente más favorable comparado con la fabricación de papel, la tala de árboles o cromados. Ya que no contamina el ambiente de forma directa, no emite gases ni desechos acuosos, con bajos niveles de ruido. Sin embargo, no todos los plásticos pueden ser reciclados y algunos susceptibles de ser reciclados son depositados en el ambiente, causando daños al medio ambiente.
La popularidad de este método se explica con la versatilidad de piezas que pueden fabricarse, la rapidez de fabricación, el diseño escalable desde procesos de prototipos rápidos, altos niveles de producción y bajos costos, alta o baja automatización según el costo de la pieza, geometrías muy complicadas que serían imposibles por otras técnicas, las piezas moldeadas requieren muy poco o nulo acabado pues son terminadas con la rugosidad de superficie deseada, color y transparencia u opacidad, buena tolerancia dimensional de piezas moldeadas con o sin insertos y con diferentes colores.





Volver al Índice

Laminado


Consiste en modificar la sección de una barra de metal al pasar entre dos cilindros, obteniéndose un espesor menor. Es el método más barato y más eficiente para reducir el área transversal de una pieza de material, de tal manera que el espesor final sea uniforme a lo largo de todo el producto.Las palanquillas o tochos se calientan con el fin de proporcionar ductilidad y maleabilidad para el proceso de la laminación en caliente. Después se pasa entre una serie de rodillos metálicos colocados en pares que lo aplastan hasta darle la forma y tamaño deseados. La distancia entre los rodillos va disminuyendo a medida que se reduce el espesor.





Volver al Índice

Mecanizado con arranque de viruta


El material es arrancado o cortado con una herramienta dando lugar a un desperdicio o viruta. La herramienta consta, generalmente, de uno o varios filos o cuchillas que separan la viruta de la pieza en cada pasada. En el mecanizado por arranque de viruta se dan procesos de desbaste (eliminación de mucho material con poca precisión; proceso intermedio) y de acabado (eliminación de poco material con mucha precisión; proceso final cuyo objetivo es el de dar el acabado superficial que se requiera a las distintas superficies de la pieza). Sin embargo, tiene una limitación física: no se puede eliminar todo el material que se quiera porque llega un momento en que el esfuerzo para apretar la herramienta contra la pieza es tan liviano que la herramienta no penetra y no se llega a extraer viruta.





Volver al Índice

Sinterizado


Es el tratamiento térmico de un polvo o compactado metálico o cerámico a una temperatura inferior a la de fusión de la mezcla, para incrementar la fuerza y la resistencia de la pieza creando enlaces fuertes entre las partículas.
En la fabricación de cerámicas, este tratamiento térmico transforma un producto en polvo en otro compacto y coherente. La sinterización se utiliza de modo generalizado para producir formas cerámicas de alúmina, berilia, ferrita y titanatos.
En la sinterización las partículas coalescen por difusión al estado sólido a muy altas temperaturas, pero por debajo del punto de fusión o vitrificación del compuesto que se desea sinterizar. En el proceso, se produce difusión atómica entre las superficies de contacto de las partículas, lo que provoca que resulten químicamente unidas.

Fases de la sinterización
Para la fabricación de una pieza mediante sinterizado se siguen las siguientes etapas:
  • Obtención del polvo
  • Preparación del polvo
  • Compactación
  • Sinterización
  • Acabado de la sinterización





Volver al Índice

Tratamientos Térmicos


Es el conjunto de operaciones de calentamiento y enfriamiento, bajo condiciones controladas de temperatura, tiempo de permanencia, velocidad, presión, etc., de los metales o las aleaciones en estado sólido, con el fin de mejorar sus propiedades mecánicas, especialmente la dureza, la resistencia y la elasticidad. Los materiales a los que se aplica el tratamiento térmico son, básicamente, el acero y la fundición, formados por hierro y carbono. También se aplican tratamientos térmicos diversos a los cerámicos.

El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas para las cuales está creado. Este tipo de procesos consisten en el calentamiento y enfriamiento de un metal en su estado sólido para cambiar sus propiedades físicas. Con el tratamiento térmico adecuado se pueden reducir los esfuerzos internos, el tamaño del grano, incrementar la tenacidad o producir una superficie dura con un interior dúctil. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecidos.
Para conocer a que temperatura debe elevarse el metal para que se reciba un tratamiento térmico es recomendable contar con los diagramas de cambio de fases como el del hierro-carbono. En este tipo de diagramas se especifican las temperaturas en las que suceden los cambios de fase (cambios de estructura cristalina), dependiendo de los materiales diluidos.

Los tratamientos térmicos han adquirido gran importancia en la industria en general, ya que con las constantes innovaciones se van requiriendo metales con mayores resistencias tanto al desgaste como a la tensión. Los principales tratamientos térmicos son:
  • Temple: Su finalidad es aumentar la dureza y la resistencia del acero. Para ello, se calienta el acero a una temperatura ligeramente más elevada que la crítica superior Ac (entre 900-950 °C) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua, aceite, etcétera.
  • Revenido: Sólo se aplica a aceros previamente templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.
  • Recocido: Consiste básicamente en un calentamiento hasta la temperatura de austenización (800-925 °C) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.
  • Normalizado: Tiene por objetivo dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido.





Volver al Índice

Trefilado


Consiste en el estirado del alambre en frío, por pasos sucesivos a través de hileras, dados o trefilas de carburo de tungsteno cuyo diámetro es paulatinamente menor. Esta disminución de sección da al material una cierta acritud en beneficio de sus características mecánicas.
Dependiendo de la longitud y el diámetro de las barras a trabajar, varían las reducciones que se pueden llegar a obtener mediante este proceso. A las barras de hasta 15 mm de diámetro o mayores, se les suele dar una ligera pasada para mejorar el acabado superficial y las tolerancias dimensionales reduciendo su diámetro hasta 1,5 mm. En otros tamaños más pequeños, se puede llegar a conseguir reducciones del 50%, y en otros alambres de hasta el 90% en pasadas sucesivas, partiendo en un estado del material de recocido y antes de que necesite un nuevo recocido con el fin de eliminar su acritud. Se fabrican alambres de hasta 0,025 mm y menores, variando el número de hileras por los que pasa el alambre y con varios recocidos de por medio.
La disminución de sección en cada paso es del orden de un 20% a un 25% lo que da un aumento de resistencia entre 10 y 15 kg/mm2. Pero alcanzado cierto límite, variable en función del tipo de acero, no es aconsejable continuar con el proceso de trefilado pues, a pesar que la resistencia a tracción sigue aumentando, se pierden otras características como la flexión.
Las ventajas que aporta el trefilado propias del conformado en frío son las siguientes: buena calidad superficial, precisión dimensional, aumento de resistencia y dureza, y por supuesto la posibilidad de producir secciones muy finas.

Proceso
Las diferentes operaciones que se realizan durante este proceso son:
  • Patentado: tratamiento térmico que consiste en calentar el alambre hasta 950 °C, y una vez alcanzada dicha temperatura; enfriarlo bruscamente en un baño de plomo a 500 °C. Este tratamiento tiene por objeto dar al alambre una estructura dúctil que permite el trefilado.
  • Decapado: consiste en preparar y limpiar el material, eliminando el óxido que puede haberse formado en las superficies del material, en laminaciones anteriores. Normalmente se hace mediante ataques químicos y posteriormente se realiza una limpieza con agua a presión.
  • Trefilado: los lubricantes y diferentes máquinas son los factores principales. Se suele utilizar de lubricantes la parafina y el grafito en solución coloidal o finamente dividido.
  • Acabado: una vez que ya ha salido el material de la hilera, se le somete a operaciones de enderezamiento, eliminación de tensiones y, a veces, algunos tratamientos isotérmicos para conseguir mejoras en las características mecánicas del producto.





Volver al Índice

Bibliografía



Wiki
Pedacitos
Videos

Volver al Índice

1 comentario:

  1. Los metodos de la embutición profunda son una de las mejores maneras de la fabricacion por lo cual esta muy bien investigar estos temas para poder ofrecerlos de mejor calidad estos servicios

    ResponderEliminar